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Abstract
When quantifying the mixing properties of a quantum dynamical system in
terms of dynamical entropy, the following scheme appears natural: observe the
state of the system at regular time intervals while it evolves and determine the
entropy produced over time. It is clear that this entropy will not only depend
on the type of dynamics, but also on the type of observations. Intuitively, one
can expect that some measurements are better suited than others to reveal
information about the dynamics, whereas many will generate undesirable
noise. In this paper, we show for two widely used model systems that the
dynamical entropy is rather robust in this respect. More precisely, general local
positive operator-valued measurements may be restricted to von Neumann-type
measurements for the shift on a quantum spin chain and gauge-invariant ones
for the shift on a Fermion chain.

PACS numbers: 02.50.−r, 03.65.Fd, 05.30.Fk

1. Introduction

Classical dynamical systems that admit a generating partition are, up to isomorphism, classified
by the value of their Kolmogorov–Sinai invariant, see [8]. This is achieved by mapping the
dynamical system on a shift dynamics on symbolic sequences written in an alphabet with
sufficiently many letters. An isomorphism is obtained because the encoding essentially maps
a phase space point into a sequence. One cannot hope to extend this procedure to quantum
dynamical systems as there is no underlying phase space. Already the shifts on quantum spin
chains—the putative standard models for quantum dynamical systems in discrete time—show
this difficulty: local observables commute as soon as they are sufficiently pulled apart so that
their domains of dependency become disjoint, while generally observables at largely separated
times never commute. Also two shifts on quantum spin chains with the same mean entropy
do not have to be isomorphic, even the type of the associated von Neumann algebra can be
different.
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It is therefore not surprising that the Kolmogorov–Sinai invariant extends in various
distinct ways to quantum dynamical systems, and different extensions feel different properties
of the system. The best-known extension is the Connes–Narnhofer–Thirring (CNT) dynamical
entropy, based on decompositions of the reference state, see [4]. This construction can be
rephrased in terms of a coupling with a classical dynamical system, see [9]. A second approach,
the Alicki–Lindblad–Fannes (ALF) entropy, is based on operational partitions of unity,
see [1, 2]. It arises by alternating generalized measurements with the dynamics. The CNT
entropy seems to encode rather the commutative aspects of the dynamics while the ALF
construction is more sensitive to non-commutativity.

Model systems are known for which these entropies yield very different results. Even such
extremes as zero for CNT and infinity for ALF occur, namely for free shifts, for Powers–Price
shifts [3] and for classical stochastic systems [7]. Even systems with a clearer physical input,
such as shifts on spin chains and free evolutions on CAR algebras (canonical anti-commutation
relations) produce different CNT and ALF entropies. For a shift on a chain with d-dimensional
single site space, the expected classical value, the entropy density σ(ω), is returned by CNT
but in the case of ALF an extra term ln d shows up.

We shall in this paper investigate robustness properties of the ALF entropy. As
mentioned above, the mathematical construction involves besides the dynamics a generalized
measurement. However, there is a lot of freedom in choosing the corresponding partitions of
unity and, in principle, repeated measurements can in themselves generate entropy. It is, in
general, an open problem to decide what the impact is on the ALF entropy.

We shall restrict here our attention to two basic models: the shifts on a spin and on
a Fermion chain. For the spin chain, we shall show that instead of using generalized
measurements as described by general partitions of unity and their corresponding positive
operator-valued measures (POVMs) it suffices to consider von Neumann-type measurements,
i.e. projection-valued partitions. The idea of modelling a quantum dynamical systems by its
multi-time correlation functions associated with a projection-valued measurement goes at least
back to proposals by Feynman and Gell-Mann. For the shift on the CAR chain, we shall show
that we may restrict our attention to partitions in gauge-invariant elements. Such elements
correspond to second quantized observables.

We conclude this introduction with a lemma that will prove useful in obtaining upper
bounds for the entropy. Recall that a size-k operational partition of unity on a Hilbert space H
is a collection X = {xi | i = 1, 2, . . . , k} of operators on H such that

k∑
i=1

x∗
i xi = 11. (1)

Here x∗ denotes the Hermitian conjugate of x. This definition straightforwardly generalizes
to a unital algebra of operators. Let, moreover, ω be a density matrix on H. We can then
introduce the k-dimensional correlation matrix ρX with (i, j)th entry

ρX (i, j) := Tr(ωx∗
j xi), i, j = 1, 2, . . . k.

Obviously, ρX is a density matrix. We finally need the von Neumann entropy of a density
matrix σ

S(σ ) := −Tr σ ln σ.

Lemma. Let ω be a density matrix on a finite-dimensional Hilbert space H and let X be a
size-k partition of unity on H. Then

S(ρX ) � S(ω) + ln dim(H).
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Denote the spectral decomposition of ω by ω = ∑
i λi |φi〉〈φi | and consider the coupled system

H ⊗ C
k . The vectors |ηi〉 := ∑k

j=1 xj |φi〉 ⊗ |ej 〉 form an orthonormal set so that the state∑
i λi |ηi〉〈ηi | on the extended system has the same entropy as ω. The partial trace of this

density matrix on C
k equals ρX while on H it has rank at most dim(H). Applying the triangle

inequality for the entropy finishes the proof.

2. Dynamical entropy

In this section, we briefly recall the construction of the quantum dynamical entropy as defined
in [1]. More details can be found in [2]. A quantum dynamical system is given by a triple
(A,�, ω). A is called the algebra of observables, the automorphism � : A → A is the single
step dynamical map and the state ω on A is the reference state, invariant under �.

As in the classical Kolmogorov–Sinai construction an initial partitionX gets refined under
the dynamics. For two partitions X = {xi | i = 1, 2, . . . , k} and Y = {yj | j = 1, 2, . . . , �},
we define the ordered composition of X and Y as X ∨ Y := {xiyj | i = 1, 2, . . . , k, j =
1, 2, . . . , �}. The evolution � of a partition X is �(X ) := {�(xi) | i = 1, 2, . . . , k}. This
gives us the N-steps refinement of a partition,

X (N)
� := �N−1(X ) ∨ . . . ∨ �(X ) ∨ X (2)

with jth element

X (N)
� (j) = �N−1(xjN−1) · · · �(xj1)xj0 , j = (j0, j1, . . . , jN−1). (3)

With a refined partition X (N)
� and a state ω we now can associate the N-steps correlation matrix

ρ
(N)
X ,�. Explicitly,

ρ
(N)
X ,�(i, j) := ω

(
X (N)

� (j)∗X (N)
� (i)

)
. (4)

The von Neumann entropy S of these refined density matrices is used to construct the
entropy of a partition

h(�,ω,X ) := lim sup
N→∞

1

N
S
(
ρ

(N)
X ,�

)
and the quantum dynamical entropy of the system (A,�, ω),

h(�,ω) := sup
X

h(�,ω,X ). (5)

The supremum over the possible partitions of unity X deserves special attention. These
partitions correspond to the measurements allowed to extract information from the dynamics.
The dynamical entropy therefore not only depends on the dynamical system (A,�, ω), but
also on the class of allowed partitions.

3. Shift on a spin chain

As a first example, we consider the shift on a quantum spin chain. In [1, 2], entropy (5) was
computed allowing arbitrary partitions in local elements. We prove that we obtain the same
result if we restrict our attention to partitions in orthogonal projections, corresponding to the
standard von Neumann-type measurements.

The observables of a single spin form the algebra Md of d × d matrices. The spins in a
finite subvolume 	 of Z are then described by A	 := ⊗

	 Md . The natural embedding of
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A	1 in A	2 for 	1 ⊂ 	2 obtained by tensoring elements of A	1 with the identity of A	2\	1

allows us to construct the algebra A of quasi-local observables of the quantum spin chain

A :=
⊗

Z

Md =
⋃
	⊂Z

A	,

where the bar denotes the norm closure. For n ∈ Z, denote by ın the canonical injection of
Md in the nth factor of A. The dynamical map � is the shift automorphism on A, defined by
�(ın(A)) = ın+1(A) with A ∈ Md . The reference state ω is an arbitrary translation invariant
state on A, meaning that ω ◦ � = ω.

3.1. Entropy of the shift

Consider now a partition X in local elements. Because of shift invariance we can assume that
they live on the interval [1,M]. The dynamics shifts these elements to the right so that after N
time steps, the refined partition lives on [1,M + N ]. The algebra A[1,M+N] is just the algebra
of dM+N -dimensional matrices. Therefore, using the lemma

S
(
ρ

(N)
X ,�

)
� S(ω[1,M+N]) + ln dM+N .

Here, ω[1,M+N] denotes the density matrix on C
dM+N

that defines the restriction of the reference
state ω to A[1,M+N] realized as the algebra of matrices of dimension dM+N . Dividing both
sides by N and taking the limit N → ∞, we obtain

h(�,ω,X ) � σ(ω) + ln d. (6)

We shall show that this inequality is saturated when we start out with a suitable partition in
orthogonal projections.

Feynman and Gell-Mann proposed to encode the dynamics of a quantum system in terms
of time-ordered multi-time correlation functions associated with a von Neumann measurement.
Let {Pi | i = 1, 2, . . . , k} be a decomposition of the identity in orthogonal projections

Pi = P ∗
i = P 2

i and
k∑

i=1

Pi = 11.

Denoting by Pi(t) the evolution of Pi during a time t, i.e. Pi(t) = U ∗(t)PiU(t) where
{U(t) | t ∈ R} is the unitary time evolution on the Hilbert space H in the case of standard
quantum mechanics, these correlation functions are

(i, t) �→ 〈 · · ·Pi1(t1)Pi0(t0)Pi1(t1) · · · 〉,
with i = (i0, . . . , iN−1) and t = (t0, . . . , tN−1), tin < tin+1 . If the Pi are one dimensional, then
the dynamics can be reconstructed using Wigner’s theorem.

Choose an orthonormal basis {|ei〉} for C
d and its associated Fourier basis

|fj 〉 := 1√
d

d∑
k=1

exp(2π ijk/d)|ek〉.

Next, consider the projectors pi := |ei〉〈ei | and qj := |fj 〉〈fj |. Both sets {pi} and {qj } are
decompositions of the identity such that X := {pi ⊗ qj |i, j = 1, . . . d} is a partition of unity.
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We now compute the corresponding refined correlation matrices

ρ
(N)
X ,�(ik, j�) = ω

(
pi0 ⊗ qk0�

(
pi1 ⊗ qk1

) · · · �N−1
(
piN−1 ⊗ qkN−1

)
�N−1

× (
pjN−1 ⊗ q�N−1

) · · · �(
pj1 ⊗ q�1

)
pj0 ⊗ q�0

)
= ω

(
pi0pj0 ⊗ qk0pi1pj1q�0 ⊗ · · · ⊗ qkN−2piN−1pjN−1q�N−2 ⊗ qkN−1q�N−1

)
= δijδkN−1�N−1ω

(
pi0 ⊗ qk0pi1ql0 ⊗ · · · ⊗ qkN−2piN−1q�N−2 ⊗ qkN−1

)
= δijδkN−1�N−1ω

(
pi0 ⊗ |fk0

〉〈
f�0 | ⊗ · · · ⊗ |fkN−2

〉〈
f�N−2 | ⊗ qkN−1

)
× 1

dN−1

N−2∏
n=0

exp(2π iin(�n − kn)/d).

From this d2N -dimensional density matrix we split off the first d dimensions (indexed by i0, j0)
and the last d dimensions (indexed by kN−1, �N−1). Denote the density matrices reduced to
these d2(N−1) dimensions by ρ̃

(N)
X ,� and to the remaining d2 dimensions by ρr . By the triangle

inequality,

S
(
ρ

(N)
X ,�

)
� S

(
ρ̃

(N)
X ,�

) − S(ρr) � S
(
ρ̃

(N)
X ,�

) − 2 ln d.

We now compute the components of the density matrix ρ̃
(N)
X ,�, using the notation ĩ =

(i1, i2, . . . , iN−1) and k̃ = (k0, k1, . . . , kN−2), and similarly j̃ and �̃.

ρ̃
(N)
X ,�(ĩk̃, j̃�̃) = 1

dN−1

N−2∏
n=0

exp(2π iin(�n − kn)/d)δĩj̃ω
(∣∣fk0

〉〈
f�0

∣∣ ⊗ · · · ⊗ |fkN−2

〉〈
f�N−2

∣∣)

= 1

dN−1
δĩj̃ω(| exp(−2π iĩ · k̃/d)fk̃〉〈exp(−2π iĩ · �̃/d)f�̃|).

This matrix is diagonal in the indices ĩ and j̃, whereas for every ĩ, the set

{| exp(−2π iĩ · k̃/d)fk̃〉|k̃ ∈ {1, 2, . . . , d}N−1}
is an orthonormal basis for C

d(N−1). Therefore, its entropy equals

S
(
ρ̃

(N)
X ,�

) = (N − 1) ln d + S
(
D(N−1)

ω

)
,

where D(N)
ω is the density matrix of ω reduced to an interval of N sites. Finally, dividing by N

and taking the limit N → ∞,

h
(
�,ω,X

)
� lim

N→∞
1

N
S
(
ρ

(N)
X ,�

) = lim
N→∞

1

N
S
(
ρ̃

(N)
X ,�

) = ln d + σ(ω).

We thus attain the upper bound in (6).

4. Shift on a Fermion chain

As a second example we study the shift on the Fermion chain. The algebra of observables A is
now the algebra of canonical anticommutation relations (CAR). It is the C*-algebra generated
by the identity and elements {ak | k ∈ Z} satisfying the relations

akal + alak = 0 and a∗
k al + ala

∗
k = δk,l11.

The dynamical map � is the shift automorphism given by �(ak) = ak+1 and the reference
state ω is the tracial state. It is uniquely determined by the condition ω(AB) = ω(BA) for
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A,B ∈ A and explicitly given on ordered monomials by

ω
(
a∗

k1
. . . a∗

kn
a�n

. . . a�1

) = 2−n, k1 < · · · < kn, �1 < · · · < �n.

All other monomials have zero expectation.
To specify our restricted class of allowed partitions, we need the gauge-invariant

subalgebra Agi. For a scalar λ ∈ T := {z | |z| = 1} define the so-called gauge automorphism
αλ by αλ(ak) := λak . The GICAR algebra Agi is the subalgebra of A invariant under all the
gauge automorphisms,

Agi := {A ∈ A | αλ(A) = A for all λ ∈ T}.
An element A := a∗

k1
. . . a∗

kn
a�m

. . . a�1 , is mapped into αλ(A) = λn−mA. It belongs to Agi if
and only if m = n. In fact, Agi is spanned by such elements.

The algebra A is the abstract version of the algebra generated by, e.g., Fermionic Fock
creation and annihilation operators. The one-particle space is �2(Z) and ak = a(ek) where ek

is the standard kth basisvector in �2(Z). The element ak is therefore the annihilation operator
of the kth mode in a chain of Fermionic modes. The elements of Agi are linear combinations
of monomials that contain as many creation as annihilation operators. Such elements conserve
the number of particles. If we realize our abstract algebra on the Fermionic Fock space, then
the elements of Agi are second quantized local observables. The tracial state ω may be thought
of as the most random state on A, namely the infinite temperature state.

Using the Jordan–Wigner isomorphism we can map the CAR algebra onto a quantum
spin chain. For our application it will suffice to consider a subalgebra of the CAR algebra
generated by {ak | k � 1} and map this algebra on the one-sided chain

⊗
k�1 M2. This

isomorphism is constructed as follows.
For n � 1, define

Vn :=
n−1∏
k=1

(2a∗
k ak − 11),

and

E
(n)
21 := Vnan, E

(n)
12 := Vna

∗
n, E

(n)
11 := a∗

nan and E
(n)
22 := ana

∗
n.

The sub-algebra An generated by {ak | 1 � k � n} is isomorphic to
⊗n

k=1 M2 with matrix
units

E
[1,n]
φψ :=

n∏
k=1

E
(k)
φkψk

, (7)

where φ = (φ1, . . . , φn) ∈ {1, 2}n and similarly for ψ. An appropriate limit of this
construction for n → ∞ leads to the quantum spin chain

⊗
k�1 M2.

The action of the gauge-automorphism αλ on the matrix units E
[1,n]
φψ is

αλ

(
E

[1,n]
φψ

) = λ�ψ−�φE
[1,n]
φψ ,

where �φ := ∑n
k=1 φk and �ψ := ∑n

k=1 ψk . The invariant elements are those for which
�φ = �ψ.

Sums like �φ can take values n, n + 1, . . . , 2n. For each integer 0 � s � n,

Fn
s := span

{
E

[1,n]
φψ

∣∣ �φ = �ψ = n + s
}

is a ∗-algebra. Indeed, we have
(
E

[1,n]
φψ

)∗ = E
[1,n]
ψφ and E

[1,n]
φψ E

[1,n]
φ′ψ′ = δφ′ψE

[1,n]
φψ′ and thus

�φ = �ψ′ = n + s. Moreover, the sum �φ equals n + s for
(
n

s

)
elements φ ∈ {1, 2}n.

Therefore, Fn
s = M(n

s)
. One also has that Fn

s Fn
t = 0 for s �= t . This leads to the direct sum
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decomposition,

Agi
n := Agi ∩ An =

n⊕
s=0

M(n

s)
.

Finally, note that the effect of the shift � on element (7) is not completely trivial. Using the
notation

E
[m,n]
φψ :=

n∏
k=m

E
(k)
φkψk

,

where φ, ψ ∈ {1, 2}n−m+1, one has

�
(
E

[1,n]
φψ

) = (2a∗
1a1 − 11)�φ−�ψE

[2,n+1]
φψ .

For gauge-invariant elements E
[1,n]
φψ , �φ = �ψ and we simply get �

(
E

[1,n]
φψ

) = E
[2,n+1]
φψ .

4.1. Entropy of the shift

An upper bound for the dynamical entropy can readily be obtained using the lemma at the end
of the introduction. Fixing any local partition X , i.e. a partition whose elements belong to a
local algebra An for n large enough, and recalling that the reference state is the tracial state,
we obtain

h(�,ω,X ) � 2 ln 2. (8)

In the following, we will construct a gauge-invariant partition of unity which effectively
realizes this upper bound. This partition will have some nice properties which will allow us to
map the system on a Markov process. This process itself will be simplified even further by a
coarse graining of the state space. In the end, the entropy for this process will be calculated and
by construction this will be the dynamical entropy for the particular choice of gauge-invariant
partition we made.

Consider the set

X := {
cφψE

[1,M]
φψ

∣∣ (φ, ψ) ∈ I0
}
,

where E
[1,M]
φψ are matrix units in the CAR algebra, see (7), and where cφψ are complex numbers

to be determined later. The index set I0 ⊂ {1, 2}2M can be chosen arbitrarily respecting the
following two conditions. First, we want only gauge-invariant elements in the partition,
meaning that �φ = �ψ. Next, we impose that for every (φ1;ψ1, . . . , ψM) there exists at
most one (φ2, . . . , φM) for which (φ, ψ) ∈ I0. In other words, the index set I0 is specified by
a map (φ1;ψ1, . . . ψM) �→ (φ2, . . . , φM) respecting gauge invariance.

For X to be a partition of unity, see (1), we have to ensure that

11 =
∑

(φ,ψ)∈I0

|cφψ|2(E[1,M]
φψ

)∗
E

[1,M]
φψ =

∑
(φ,ψ)∈I0

|cφψ|2E[1,M]
ψψ

and thus that ∑
φ:(φ,ψ)∈I0

|cφψ|2 = 1 for all ψ ∈ {1, 2}M. (9)

The partition after N refinements will still consist of elements proportional to matrix units,
now living on N + M sites. Such an element has the following structure:

E
[1,M+N]
(φ1,...,φM+N )(ψ1,...,ψM+N ) = E

[N+1,M+N]
(φN+1,...,φM+N )(t(N),ψM+N )

E
[N,M+N−1]
(φN ,t(N))(t(N−1),ψM+N−1)

· · · E[2,M+1]
(φ2,t

(2))(t(1),ψM+1)
E

[1,M]
(φ1,t

(1))(ψ1,...,ψM)
, (10)
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where t(n) ∈ {1, 2}M−1 for n = 1, . . . , N and where we have used the notation (φ, t) to
indicate the concatenation of (φ) and t. Due to the structure of the index set I0, there is only
one combination of elements of the initial partition X leading to a given element of the refined
partition X (N)

� . We will denote the latter by

X (N)
� = {

cφψE
[1,M+N]
φψ

∣∣ (φ, ψ) ∈ IN

}
with the new index set IN ⊂ {1, 2}2(M+N).

The corresponding correlation matrix is

ρ
(N)
X ,�(φψ, φ′ψ′) = 1

2N+M
Tr

((
cφψE

[1,M+N]
φψ

)∗
cφ′ψ′E

[1,M+N]
φ′ψ′

) = 1

2N+M
|cφψ|2δφφ′δψψ′ ,

and, as a given refinement can only be obtained in a single way, this correlation matrix is
diagonal.

The problem has therefore been reduced to a dynamical entropy computation of a classical
dynamical system. The probabilities on the diagonal can be written as in (10)

ρ
(N)
X ,�(φψ, φψ) = 1

2M+N

∣∣c(φ1,t
(1))(ψ1,...,ψM)

∣∣2∣∣c(φ2,t
(2))(t(1),ψM+1)

∣∣2

· · · ∣∣c(φN ,t(N))(t(N−1),ψM+N−1)

∣∣2∣∣c(φN+1,...,φM+N )(t(N),ψM+N )

∣∣2
. (11)

Because there is no summation over the t indices, these diagonal elements are path probabilities
of a Markov process. The states correspond to elements of the partition of unity, given by a
pair (φ, ψ) in I0. A pair is determined by (φ1;ψ1, . . . ψM) and, moreover, if ψ = (1, 1, . . . , 1)

or ψ = (2, 2, . . . , 2), then only one φ can occur. The number of states is thus 2M+1 − 2. A
transition from state (φ, ψ) to state (φ′, ψ′) is allowed only if the indices φ and ψ′ match, i.e.,

(φ2, . . . , φM) = (ψ ′
1, . . . , ψ

′
M−1). (12)

As can be read off from (11), the transition probability from the state ((φn, t
(n)), ψ) to

(φ′, (t(n), ψ ′
n+M−1)) is 1

2 |cφ′(t(n),ψ ′
n+M−1)

|2 and the initial measure assigns the weight 2−M |cφψ|2
to (φ, ψ). Equation (9) ensures that these objects indeed correspond to a transition matrix and
a probability measure.

We simplify notation and denote the set of states by A, the transition probabilities by
Pab, a, b ∈ A, the initial measure by µ and the measure after n time steps by µn. The entropy
we are looking for is

S
(
ρ

(N)
X ,�

) = −
∑

a0,a1,...,aN

µ(a0)Pa0a1 · · · PaN−1aN
ln

(
µ(a0)Pa0a1 · · · PaN−1aN

)
= −

∑
a0,a1,...,aN−1

µ(a0)Pa0a1 · · ·PaN−2aN−1 ln
(
µ(a0)Pa0a1 · · · PaN−2aN−1

)
−

∑
aN−1aN

µN−1(aN−1)PaN−1aN
ln PaN−1aN

= · · ·

= −
N−1∑
n=0

∑
a∈A

µn(a)
∑
b∈A

Pab ln Pab. (13)

We have thus to calculate the quantity
∑

a ν(a)
∑

b Pab ln Pab for a measure ν.
From a given state a there are only three or four possible states for b to go to. This defines

a partition (A3, A4) of the set of states A. More explicitly, the state (φ, ψ) ∈ A3 if and only
if (φ2, . . . , φM) = (111 . . . 1) or (222 . . . 2). From now on we fix values for the coefficients
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cφψ, namely,

cφψ :=
{

1 if ψ = (1, 1, . . . , 1) or ψ = (2, 2, . . . , 2)

1√
2

otherwise.
(14)

Note that with this choice (9) is fulfilled. The transition probabilities from a state a ∈ A3 are(
1
2 , 1

4 , 1
4

)
and from a state a ∈ A4

(
1
4 , 1

4 , 1
4 , 1

4

)
. We obtain

−
∑
a∈A

ν(a)
∑
b∈A

−Pab ln Pab = ν(A3)
3

2
ln 2 + ν(A4)2 ln 2. (15)

The probabilities ν(A3) and ν(A4) will be computed by coarse graining the set of states A.
For p, q ∈ {1, 2} and s ∈ {0, 1, . . . M}, define the sets

E s
pq := {

((p, φ), (ψ, q))
∣∣ φ, ψ ∈ {1, 2}M−1, p + �φ = �ψ + q = M + s

}
.

We will consider these groups as the states of a new process. Note that there are only 4M − 2
of them, a number that should be compared with 2M+1 − 2 previously. To shorten notation,
we shall use {Ci ⊂ A} for the coarse-grained states, and {ai ∈ A} for the fine-grained states.

No matter how one chooses the map (φ1;ψ1, . . . , ψM) �→ (φ2, . . . , φM), these two
processes have a peculiar structure. Firstly, for given a1 and C2, if there is a transition possible
from a1 to a2 ∈ C2, then this a2 is unique. Moreover, with choice (14) for the coefficients
cφψ, for given C1 and C2, all allowed transitions from a1 ∈ C1 to a2 ∈ C2 have the same
probability. Therefore, it makes sense to write the transition probabilities as PC1C2 .

Explicitly, these transitions are given as follows: for s = 2, . . . , M − 2, (s = 1, p = 1)

and (s = M − 1, p = 2)

E s
11, E s

12 → E s
11, E s

21, E s+1
12 , E s+1

22 E s
21, E s

22 → E s−1
11 , E s−1

21 , E s
12, E s

22. (16)

These states have four possible transitions, i.e. they constitute the set A4. For other
combinations (s, p)

E0
11, E1

21, E1
22 → E0

11, E1
12, E1

22 EM
22 , EM−1

11 , EM−1
21 → EM

22 , EM−1
11 , EM−1

21 . (17)

These states have three possible transitions and constitute A3.
The special structure of the considered processes has two important consequences. Firstly,

the coarse-grained process is still Markovian. Indeed, the probability for a coarse-grained path
is

P(C1C2 . . . CN) =
∑
a1∈C1

∑
a2∈C2

· · ·
∑

aN ∈CN

µ(a1)Pa1a2Pa2a3 · · · PaN−1aN

=
∑
a1∈C1

∑
a2∈C2

· · ·
∑

aN−1∈CN−1

µ(a1)Pa1a2 · · · PaN−2aN−1PCN−1CN

= · · ·
=

∑
a1∈C1

µ(a1)PC1C2 · · · PCN−1CN

= µ(C1)PC1C2 · · · PCN−1CN
.

Secondly, the entropy formula (15) for the fine-grained and coarse-grained process leads to
the same result. Indeed,

−
∑

a

ν(a)
∑

b

Pab ln Pab = −
∑
C1

∑
a∈C1

ν(a)
∑
C2

PC1C2 ln PC1C2

= −
∑
C1

ν(C1)
∑
C2

PC1C2 ln PC1C2 .

In other words, there is no information loss due to the coarse graining.
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Inspecting the transition graph of the coarse-grained process (16), (17), one can see that
it is strongly connected. Therefore, the transition matrix is irreducible [6]. Moreover, there is
a strictly positive diagonal element, which implies that the transition matrix is primitive [6].
As a consequence, it has an unique invariant measure µ∞ and the initial measure converges
to it. Because we are only interested in the limit N → ∞ in (13), we can as well calculate
this entropy using the invariant measure from the start. Therefore

h(�,ω) � lim
N→∞

1

N
S
(
ρ

(N)
X ,�

)
= −

∑
C1

µ∞(C1)
∑
C2

PC1C2 ln PC1C2

= µ∞(A3)
3

2
ln 2 + µ∞(A4)2 ln 2, (18)

where we used (15) in the last line. Obtaining the values µ∞(A3) and µ∞(A4) finishes the
computation.

The invariant measure µ∞ can be easily calculated and equals

µ∞(φ,ψ) =




1

2M
if φ = ψ = (1, 1, . . . , 1) or φ = ψ = (2, 2, . . . , 2)

1

4M
otherwise.

Therefore, µ∞(A3) = 2/M and µ∞(A4) = (M − 2)/M . Substituting this in (18)

h(�,ω) � 2

M

3

2
ln 2 +

M − 2

M
2 ln 2 =

(
2 − 1

M

)
ln 2 (19)

and this converges to 2 ln 2 when M goes to infinity. We have therefore saturated the upper
bound (8).

5. Conclusion

In this paper, we studied the dependence of the ALF dynamical entropy on the class of allowed
partitions. We considered two basic dynamical systems: the shift on a spin chain and the shift
on a Fermionic chain. In these cases, the dynamical entropy seems to be robust for natural
restrictions on the classes of allowed partitions. These model systems saturate, however, an
upper bound following from simple dimensional estimates. It would be interesting to go
beyond this situation and investigate examples where this is no longer the case.
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